Cx43 Hemichannel and Panx1 Channel Modulation by Gap19 and 10Panx1 Peptides

Author:

Lissoni Alessio1ORCID,Tao Siyu1ORCID,Allewaert Rosalie1,Witschas Katja1ORCID,Leybaert Luc1ORCID

Affiliation:

1. Department of Basic and Applied Medical Sciences—Physiology Group, Ghent University, 9000 Ghent, Belgium

Abstract

Cx43 hemichannels (HCs) and Panx1 channels are two genetically distant protein families. Despite the lack of sequence homology, Cx43 and Panx1 channels have been the subject of debate due to their overlapping expression and the fact that both channels present similarities in terms of their membrane topology and electrical properties. Using the mimetic peptides Gap19 and 10Panx1, this study aimed to investigate the cross-effects of these peptides on Cx43 HCs and Panx1 channels. The single-channel current activity from stably expressing HeLa-Cx43 and C6-Panx1 cells was recorded using patch-clamp experiments in whole-cell voltage-clamp mode, demonstrating 214 pS and 68 pS average unitary conductances for the respective channels. Gap19 was applied intracellularly while 10Panx1 was applied extracellularly at different concentrations (100, 200 and 500 μM) and the average nominal open probability (NPo) was determined for each testing condition. A concentration of 100 µM Gap19 more than halved the NPo of Cx43 HCs, while 200 µM 10Panx1 was necessary to obtain a half-maximal NPo reduction in the Panx1 channels. Gap19 started to significantly inhibit the Panx1 channels at 500 µM, reducing the NPo by 26% while reducing the NPo of the Cx43 HCs by 84%. In contrast 10Panx1 significantly reduced the NPo of the Cx43 HCs by 37% at 100 µM and by 83% at 200 µM, a concentration that caused the half-maximal inhibition of the Panx1 channels. These results demonstrate that 10Panx1 inhibits Cx43 HCs over the 100–500 µM concentration range while 500 µM intracellular Gap19 is necessary to observe some inhibition of Panx1 channels.

Funder

Research Foundation—Flanders

Ghent University

China Scholarship Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3