MD–Ligand–Receptor: A High-Performance Computing Tool for Characterizing Ligand–Receptor Binding Interactions in Molecular Dynamics Trajectories

Author:

Pieroni Michele1,Madeddu Francesco1,Di Martino Jessica2,Arcieri Manuel3ORCID,Parisi Valerio4,Bottoni Paolo1ORCID,Castrignanò Tiziana2

Affiliation:

1. Department of Computer Science, “Sapienza” University of Rome, V. le Regina Elena 295, 00161 Rome, Italy

2. Department of Ecological and Biological Sciences, Tuscia University, Viale dell’Università s.n.c., 01100 Viterbo, Italy

3. Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800 Kongens Lyngby, Denmark

4. Department of Physics, “Sapienza” University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy

Abstract

Molecular dynamics simulation is a widely employed computational technique for studying the dynamic behavior of molecular systems over time. By simulating macromolecular biological systems consisting of a drug, a receptor and a solvated environment with thousands of water molecules, MD allows for realistic ligand–receptor binding interactions (lrbi) to be studied. In this study, we present MD–ligand–receptor (MDLR), a state-of-the-art software designed to explore the intricate interactions between ligands and receptors over time using molecular dynamics trajectories. Unlike traditional static analysis tools, MDLR goes beyond simply taking a snapshot of ligand–receptor binding interactions (lrbi), uncovering long-lasting molecular interactions and predicting the time-dependent inhibitory activity of specific drugs. With MDLR, researchers can gain insights into the dynamic behavior of complex ligand–receptor systems. Our pipeline is optimized for high-performance computing, capable of efficiently processing vast molecular dynamics trajectories on multicore Linux servers or even multinode HPC clusters. In the latter case, MDLR allows the user to analyze large trajectories in a very short time. To facilitate the exploration and visualization of lrbi, we provide an intuitive Python notebook (Jupyter), which allows users to examine and interpret the results through various graphical representations.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3