A Joint Graph-Based Approach for Simultaneous Underwater Localization and Mapping for AUV Navigation Fusing Bathymetric and Magnetic-Beacon-Observation Data

Author:

Chang Shuai12ORCID,Zhang Dalong2ORCID,Zhang Linfeng1,Zou Guoji3,Wan Chengcheng3,Ma Wencong3,Zhou Qingji2

Affiliation:

1. Key Laboratory of Smart Earth, Beijing 100094, China

2. School of Marine Science and Technology, Tianjin University, Tianjin 300072, China

3. Department of Navigation, Space Star Technology Company, Ltd., Beijing 100086, China

Abstract

Accurate positioning is the necessary basis for autonomous underwater vehicles (AUV) to perform safe navigation in underwater tasks, such as port environment monitoring, target search, and seabed exploration. The position estimates of underwater navigation systems usually suffer from an error accumulation problem, which makes the AUVs difficult use to perform long-term and accurate underwater tasks. Underwater simultaneous localization and mapping (SLAM) approaches based on multibeam-bathymetric data have attracted much attention for being able to obtain error-bounded position estimates. Two problems limit the use of multibeam bathymetric SLAM in many scenarios. The first is that the loop closures only occur in the AUV path intersection areas. The second is that the data association is prone to failure in areas with gentle topographic changes. To overcome these problems, a joint graph-based underwater SLAM approach that fuses bathymetric and magnetic-beacon measurements is proposed in this paper. In the front-end, a robust dual-stage bathymetric data-association method is used to first detect loop closures on the multibeam bathymetric data. Then, a magnetic-beacon-detection method using Euler-deconvolution and optimization algorithms is designed to localize the magnetic beacons using a magnetic measurement sequence on the path. The loop closures obtained from both bathymetric and magnetic-beacon observations are fused to build a joint-factor graph. In the back-end, a diagnosis method is introduced to identify the potential false factors in the graph, thus improving the robustness of the joint SLAM system to outliers in the measurement data. Experiments based on field bathymetric datasets are performed to test the performance of the proposed approach. Compared with classic bathymetric SLAM algorithms, the proposed algorithm can improve the data-association accuracy by 50%, and the average positioning error after optimization converges to less than 10 m.

Funder

National Key Research and Development Program of China

Key Laboratory of Smart Earth

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3