Cellulose-Acetate-Based Films Modified with Ag2O and ZnS as Nanocomposites for Highly Controlling Biological Behavior for Wound Healing Applications

Author:

Alharthi Amjad F.,Gouda MohamedORCID,Khalaf Mai M.ORCID,Elmushyakhi AbrahamORCID,Abou Taleb Manal F.ORCID,Abd El-Lateef Hany M.ORCID

Abstract

For wound healing, functional films with certain physicochemical and biological properties are needed. Thus, the current work aimed to fabricate multifunctional materials comprising metal oxide nanoparticles loaded with an efficient polymer to be used as dressing material. A composite containing polymeric phases of cellulose acetate (CA) blended with zinc sulfide (ZnS), silver oxide (Ag2O), and graphene oxide (GO) was successfully synthesized. The prepared composite crystallinity was studied using the X-ray diffraction technique (XRD). Further, the functional groups and the elemental analysis were investigated using Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the surface morphology was studied using scanning electron microscopy (SEM) to obtain the shape and size of particles. SEM showed that the particles were formed in wide distribution in the range of 18–915 nm with an average size of 235 nm for Ag2O/ZnS/GO/CA. The particle size of Ag2O in the CA film was in the range between 19 and 648 nm with an average size of 216 nm, while the particle size of ZnS in CA was in the range of 12–991 nm with an average age particle size of 158 mm. In addition, EDX, based on SEM investigation, detected high carbon and oxygen quantities at around 94.21% of the composite. The contact angle decreased and reached 26.28° ± 2.12° in Ag2O/ZnS/CA. Furthermore, thermogravimetric analysis (TGA) was used to investigate the thermal stability, and the composition was thermally stable until 300 °C. Moreover, the cell viability of “normal lung cells” reached 102.66% in vitro at a concentration of 1250 µg/mL. The antibacterial activity of Ag2O/ZnS/GO/CA was also detected against E. coli with a zone of inhibition reaching 17.7 ± 0.5 mm. Therefore, the composite can be used in biomedical applications due to its biocompatibility and antibacterial activity.

Funder

Deanship of Scientific Research at King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3