A Highly Reliable Convolutional Neural Network Based Soft Tissue Sarcoma Metastasis Detection from Chest X-ray Images: A Retrospective Cohort Study

Author:

Wallner Christoph,Alam MansoorORCID,Drysch Marius,Wagner Johannes Maximilian,Sogorski AlexanderORCID,Dadras Mehran,von Glinski Maxi,Reinkemeier Felix,Becerikli Mustafa,Heute Christoph,Nicolas Volkmar,Lehnhardt Marcus,Behr Björn

Abstract

Introduction: soft tissue sarcomas are a subset of malignant tumors that are relatively rare and make up 1% of all malignant tumors in adulthood. Due to the rarity of these tumors, there are significant differences in quality in the diagnosis and treatment of these tumors. One paramount aspect is the diagnosis of hematogenous metastases in the lungs. Guidelines recommend routine lung imaging by means of X-rays. With the ever advancing AI-based diagnostic support, there has so far been no implementation for sarcomas. The aim of the study was to utilize AI to obtain analyzes regarding metastasis on lung X-rays in the most possible sensitive and specific manner in sarcoma patients. Methods: a Python script was created and trained using a set of lung X-rays with sarcoma metastases from a high-volume German-speaking sarcoma center. 26 patients with lung metastasis were included. For all patients chest X-ray with corresponding lung CT scans, and histological biopsies were available. The number of trainable images were expanded to 600. In order to evaluate the biological sensitivity and specificity, the script was tested on lung X-rays with a lung CT as control. Results: in this study we present a new type of convolutional neural network-based system with a precision of 71.2%, specificity of 90.5%, sensitivity of 94%, recall of 94% and accuracy of 91.2%. A good detection of even small findings was determined. Discussion: the created script establishes the option to check lung X-rays for metastases at a safe level, especially given this rare tumor entity.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3