Microstructural and Elemental Characterization of Root Canal Sealers Using FTIR, SEM, and EDS Analysis

Author:

Assiry Ali A.1ORCID,Karobari Mohmed Isaqali23ORCID,Lin Galvin Sim Siang2ORCID,Batul Rumesa2,Snigdha Niher Tabassum4,Luke Alexander Maniangat5ORCID,Shetty Krishna Prasad5ORCID,Scardina Giuseppe Alessandro6ORCID,Noorani Tahir Yusuf2ORCID

Affiliation:

1. Preventive Dental Science Department, Faculty of Dentistry, Najran University, Najran 55461, Saudi Arabia

2. Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia

3. Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India

4. Paediatric Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu 16150, Kelantan, Malaysia

5. College of Dentistry, Centre of Medical and Bio-Allied Health Science Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates

6. Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy

Abstract

Background: Root canal sealers and repair materials should have the desirable physical, chemical, and biological characteristics, and an antibacterial effect if possible. There is little information available on the biocompatibility of new sealers on the market. Fourier transform infrared spectroscopy (FTIR) can offer trustworthy data to examine chemical structures; another technique for revealing the elements in the constituents that may contribute to the cytotoxicity of these sealers is scanning electron microscopy (SEM), with the goal of elemental mapping utilizing energy-dispersive X-ray spectroscopy (EDX). Methodology: All the root canal sealers were mixed as per the manufacturers’ instructions and allowed to set in molds for 24 h. Then, the samples were placed into an incubator (Memmert GmbH + Co. KG, Schwabach, Germany for 72 h, in a moist environment to allow complete chemical setting of the sealers. The organic and inorganic components of the sample were identified using FTIR with the wavelength length in the infra-red region measuring 400–450 nm. The finely crushed samples were coated with gold metal; following that, the sealer samples were examined under a scanning electron microscope (SEM) at 5000×, 10,000×, and 20,000× magnification, followed by energy-dispersive X-ray spectroscopy. Results: The surfaces of BioRoot and DiaRoot sealers revealed a relatively uniform distribution of irregular micro-sized particles aggregated in clusters, with the particle size ranging from 1 to 65 µm and 0.4 to 55 µm, respectively. OneFill, iRoot, and CeraSeal demonstrated irregularly shaped particles with particle sizes of 0.5 to 105 µm, 0.5 to 195 µm, and 0.3 to 68 µm, respectively. The EDX microanalysis revealed that oxygen, calcium, and carbon were found in all the tested sealer materials. Silicone and zirconium were absent in DiaRoot, but DiaRoot contained fluoride and ytterbium. Moreover, aluminum was noted in DiaRoot, One Fill, and CeraSeal, and chloride was only observed in BioRoot. FTIR analysis revealed strong absorption bands at 666 cm−1 and 709 cm−1 in BioRoot. Bands at 739 cm−1, 804 cm−1, 863 cm−1, 898 cm−1, and 1455 cm−1 were observed in DiaRoot. Bands at 736 cm−1 and 873 cm−1 in OneFill suggested the presence of C-H bending. Similarly, bands were observed at 937 cm−1, 885 cm−1, 743 cm−1, and 1455 cm−1 in iRoot, representing C-H stretching. Conclusions: All root canal sealers had diverse surface morphologies that contained irregular, micro-sized particles that were uniformly distributed, and they lacked heavy metals. All the experimental sealers comprised mainly calcium, oxygen, and carbon.

Funder

KSA and Global Dental Research Consultants

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3