Enhancing Knowledge-Aware Recommendation with Dual-Graph Contrastive Learning

Author:

Huang Jinchao1ORCID,Xie Zhipu1,Zhang Han1,Yang Bin1,Di Chong2,Huang Runhe3ORCID

Affiliation:

1. China Unicom Research Institute, Beijing 100176, China

2. Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

3. Faculty of Computer & Information Sciences, Hosei University, Tokyo 184-8584, Japan

Abstract

Incorporating knowledge graphs as auxiliary information to enhance recommendation systems can improve the representations learning of users and items. Recommendation methods based on knowledge graphs can introduce user–item interaction learning into the item graph, focusing only on learning the node vector representations within a single graph; alternatively, they can treat user–item interactions and item graphs as two separate graphs and learn from each graph individually. Learning from two graphs has natural advantages in exploring original information and interaction information, but faces two main challenges: (1) in complex graph connection scenarios, how to adequately mine the self-information of each graph, and (2) how to merge interaction information from the two graphs while ensuring that user–item interaction information predominates. Existing methods do not thoroughly explore the simultaneous mining of self-information from both graphs and effective interaction information, leading to the loss of valuable insights. Considering the success of contrastive learning in mining self-information and auxiliary information, this paper proposes a dual-graph contrastive learning recommendation method based on knowledge graphs (KGDC) to explore a more accurate representations of users and items in recommendation systems based on external knowledge graphs. In the learning process within the self-graph, KGDC strengthens and represents the information of different connecting edges in both graphs, and extracts the existing information more fully. In interactive information learning, KGDC reinforces the interaction relationship between users and items in the external knowledge graph, realizing the leading role of the main task. We conducted a series of experiments on three standard datasets, and the results show that the proposed method can achieve better results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3