Methicillin-Resistant Staphylococcus aureus in Diabetic Foot Infections: Protein Profiling, Virulence Determinants, and Antimicrobial Resistance

Author:

Abalkhail AdilORCID,Elbehiry Ayman

Abstract

Staphylococcus aureus (S. aureus) is one of the most prevalent bacterial pathogens recovered from diabetic foot infections (DFIs). Most S. aureus isolates exhibit methicillin resistance, so treatment is recommended with antimicrobials active against methicillin-resistant S. aureus (MRSA) in patients who have risk factors associated with MRSA infections. The main goal of this study was to see if proteomics and molecular methods could be effective in identifying and distinguishing MRSA recovered from DFIs. Since MRSA is highly resistant to β-lactam antibiotics and usually does not respond to other antimicrobial drugs, we evaluated the resistance of MRSA isolates against different antibiotics. The standard procedures were followed for a culture of 250 skin swabs collected from diabetic foot patients. The phenotypic characteristics of 48 suspected S. aureus cultures were determined via microscopic examination, Gram staining, a coagulase test, a BBL™ Staphyloslide™ Latex test, a Staph ID 32 API system, and a Vitek 2 Compact system. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to examine the protein profile of all isolates, and real-time PCR was then used to identify mecA and PVL virulence genes. S aureus isolates were tested using the Vitek 2 Compact for antimicrobial susceptibility using Gram-positive cards (GP71). Among the 48 bacterial isolates tested, 45 (93.75%), 42 (87.5%), and 46 (95.83%) were positive in tube coagulase, the Staph ID 32 API system, and the Vitek 2 Compact system, respectively. We correctly identified all suspected S. aureus isolates (100%) via MALDI-TOF MS with a score value ≥2.00 and differentiated them into 22/48 MRSA (45.83%) and 26/48 MSSA (54.17%) isolates. A higher peak intensity at masses of 5530 Da, 6580 Da, 6710 Da, and 6820 Da was detected in MRSA, but not in MSSA. All MRSA isolates tested positive for the mecA gene, while all isolates tested negative for the PVL gene. The antibiotic susceptibility results showed that 22 (100%), 20 (90.91%), 19 (86.36%), 18 (81.82%), 17 (77.27%), 15 (68.18%), 13 (59.1%), and 12 (54.55%) MRSA strains were resistant to cefoxitin, daptomycin, erythromycin, benzylpenicillin, ciprofloxacin, oxacillin, and clindamycin, respectively. In contrast, all MRSA strains were extremely susceptible (100%) to linezolid, nitrofurantoin, quinupristin–dalfopristin, tigecycline, and vancomycin. Moreover, 20 (90.91%), 18 (81.82%), and 17 (77.27%) of the MRSA strains exhibited high sensitivity against rifampin, trimethoprim–sulfamethoxazole, and gentamicin, respectively. In DFIs, MALDI-TOF MS is a powerful and accurate method of identifying and distinguishing both MRSA and MSSA isolates. A high level of antimicrobial resistance was found in MRSA isolates, and antibiotic therapy based on antibiotic susceptibility patterns is essential for a successful outcome.

Funder

Qassim University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3