Can Alterations in Cerebrovascular CO2 Reactivity Be Identified Using Transfer Function Analysis without the Requirement for Carbon Dioxide Inhalation?

Author:

Ogoh Shigehiko12ORCID,Watanabe Hironori1,Saito Shotaro1,Fisher James P.3ORCID,Iwamoto Erika4ORCID

Affiliation:

1. Department of Biomedical Engineering, Toyo University, Kawagoe 350-8585, Japan

2. Neurovascular Research Laboratory, University of South Wales, Pontypridd CF37 1DL, UK

3. Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand

4. School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan

Abstract

The present study aimed to examine the validity of a novel method to assess cerebrovascular carbon dioxide (CO2) reactivity (CVR) that does not require a CO2 inhalation challenge, e.g., for use in patients with respiratory disease or the elderly, etc. In twenty-one healthy participants, CVR responses to orthostatic stress (50° head-up tilt, HUT) were assessed using two methods: (1) the traditional CO2 inhalation method, and (2) transfer function analysis (TFA) between middle cerebral artery blood velocity (MCA V) and predicted arterial partial pressure of CO2 (PaCO2) during spontaneous respiration. During HUT, MCA V steady-state (i.e., magnitude) and MCA V onset (i.e., time constant) responses to CO2 inhalation were decreased (p < 0.001) and increased (p = 0.001), respectively, indicative of attenuated CVR. In contrast, TFA gain in the very low-frequency range (VLF, 0.005–0.024 Hz) was unchanged, while the TFA phase in the VLF approached zero during HUT (−0.38 ± 0.59 vs. 0.31 ± 0.78 radians, supine vs. HUT; p = 0.003), indicative of a shorter time (i.e., improved) response of CVR. These findings indicate that CVR metrics determined by TFA without a CO2 inhalation do not track HUT-evoked reductions in CVR identified using CO2 inhalation, suggesting that enhanced cerebral blood flow response to a change in CO2 using CO2 inhalation is necessary to assess CVR adequately.

Funder

Japanese Ministry of Education, Culture, Sports, Science and Technology

Auckland Medical Research Foundation

Health Research Council of New Zealand

Royal Society Te Apārangi

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3