Vision-Guided Hierarchical Control and Autonomous Positioning for Aerial Manipulator

Author:

Ye Xia1,Cui Haohao1,Wang Lidong1ORCID,Xie Shangjun1,Ni Hong1

Affiliation:

1. School of Engineering, Hangzhou Normal University, Hangzhou 310018, China

Abstract

Aerial manipulator systems possess active operational capability, and by incorporating various sensors, the systems’ autonomy is further enhanced. In this paper, we address the challenge of accurate positioning between an aerial manipulator and the operational targets during tasks such as grasping and delivery in the absence of motion capture systems indoors. We propose a vision-guided aerial manipulator system comprising a quad-rotor UAV and a single-degree-of-freedom manipulator. First, the overall structure of the aerial manipulator is designed, and a hierarchical control system is established. We employ the fusion of LiDAR-based SLAM (simultaneous localization and mapping) and IMU (inertial measurement unit) to enhance the positioning accuracy of the aerial manipulator. Real-time target detection and recognition are achieved by combining a depth camera and laser sensor for distance measurements, enabling adjustment of the grasping pose of the aerial manipulator. Finally, we employ a segmented grasping strategy to position and grasp the target object precisely. Experimental results demonstrate that the designed aerial manipulator system maintains a stable orientation within a certain range of ±5° during operation; its position movement is independent of orientation changes. The successful autonomous grasping of lightweight cylindrical objects in real-world scenarios verifies the effectiveness and rationality of the proposed system, ensuring high operational efficiency and robust disturbance resistance.

Funder

National College Student Innovation and Entrepreneurship Training Program

General Projects of Zhejiang Provincial Department of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3