Modified TPP-MoS2 QD Blend as a Bio-Functional Model for Normalizing Microglial Dysfunction in Alzheimer’s Disease

Author:

Alomari Ohoud A.1,Qusti Safaa1,Balgoon Maha1ORCID,Aljoud Fadwa2,Alamry Khalid A.3,Hussein Mahmoud A.34ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of β-amyloid peptide (Aβ) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play an important role in maintaining brain homeostasis through a variety of phenotypes, including the pro-inflammatory phenotype and anti-inflammatory phenotypes. However, persistently activated microglial cells generate reactive species and neurotoxic mediators. Therefore, inhibitors of microglial activation are seen to have promise in AD control. The modified TPP/MoS2 QD blend is a mitochondrion-targeted nanomaterial that exhibits cytoprotective activities and antioxidant properties through scavenging free radicals. In the present study, the cell viability and cytotoxicity of the DSPE-PEG-TPP/MoS2 QD blend on microglial cells stimulated by Aβ were investigated. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were also assessed. In addition, pro-inflammatory and anti-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), transforming growth factor beta (TGF-β), inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-I) were measured in the presence or absence of the DSPE-PEG-TPP/MoS2 QD blend on an immortalized microglia cells activated by accumulation of Aβ. We found that the DSPE-PEG-TPP/MoS2 QD blend was biocompatible and nontoxic at specific concentrations. Furthermore, the modified TPP/MoS2 QD blend significantly reduced the release of free radicals and improved the mitochondrial function through the upregulation of MMP in a dose-dependent manner on microglial cells treated with Aβ. In addition, pre-treatment of microglia with the DSPE-PEG-TPP/MoS2 QD blend at concentrations of 25 and 50 μg/mL prior to Aβ stimulation significantly inhibited the release and expression of pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, and iNOS. Nevertheless, the anti-inflammatory cytokines TGF-β and Arg-I were activated. These findings suggest that the modified TPP/MoS2 QD blend reduced oxidative stress, inflammation and improved the mitochondrial function in the immortalized microglial cells (IMG) activated by Aβ. Overall, our research shows that the DSPE-PEG-TPP/MoS2 QD blend has therapeutic promise for managing AD and can impact microglia polarization.

Publisher

MDPI AG

Subject

Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3