Morphometric and Nanomechanical Features of Platelets from Women with Early Pregnancy Loss Provide New Evidence of the Impact of Inherited Thrombophilia

Author:

Andreeva Tonya,Komsa-Penkova Regina,Langari Ariana,Krumova SashkaORCID,Golemanov Georgi,Georgieva Galya B.,Taneva Stefka G.,Giosheva Ina,Mihaylova Nikolina,Tchorbanov Andrey,Todinova Svetla

Abstract

Pregnancy is associated with hypercoagulation states and increased thrombotic risk, especially in women with thrombophilia. We combine atomic force microscopy (AFM) and flow cytometry to examine the morphology and nanomechanics of platelets derived from women with early pregnancy loss (EPL) and control pregnant (CP) and non-pregnant (CNP) women. Both control groups exhibit similar morphometric parameters (height and surface roughness) and membrane stiffness of platelets. EPL patients’ platelets, on the other hand, are more activated than the control groups, with prominent cytoskeletal rearrangement. In particular, reduced membrane roughness (22.9 ± 6 nm vs. 39.1 ± 8 nm) (p < 0.05) and height (692 ± 128 nm vs. 1090 ± 131 nm) (p < 0.05), strong alteration in the membrane Young modulus, increased production of platelets’ microparticles, and higher expression of procoagulant surface markers, as well as increased occurrence of thrombophilia (FVL, FII20210A, PLA1/A2, MTHFR C677T or 4G/5G PAI-1) polymorphisms were found. We suggest that the carriage of thrombophilic mutations triggers structural and nanomechanical abnormalities in platelets, resulting in their increased activation. The activation state of platelets can be well characterized by AFM, and the morphometric and nanomechanical characteristics might serve as a new criterion for evaluation of the cause of miscarriage and offer the prospect of an innovative approach serving for diagnostic purposes.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3