Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking

Author:

Zhang Yajing1,Zhao Zirui1,Li Wenlong1,Tang Yuanhu1,Wang Shujie1

Affiliation:

1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

Abstract

Taxanes are natural compounds for the treatment of lung cancer, but the molecular mechanism behind the effects is unclear. In the present study, through network pharmacology and molecular docking, the mechanism of the target and pathway of taxanes in the treatment of lung cancer was studied. The taxanes targets were determined by PubChem database, and an effective compounds-targets network was constructed. The GeneCards database was used to determine the disease targets of lung cancer, and the intersection of compound targets and disease targets was obtained. The Protein–Protein Interaction (PPI) network of the intersection targets was analyzed, and the PPI network was constructed by Cytoscape 3.6.0 software. The hub targets were screened according to the degree value, and the binding activity between taxanes and hub targets was verified by molecular docking. The results showed that eight taxane-active compounds and 444 corresponding targets were screened out, and 131 intersection targets were obtained after mapping with lung cancer disease targets. The hub targets obtained by PPI analysis were TP53, EGFR, and AKT1. Gene Ontology (GO) biological function enrichment analysis obtained 1795 biological process (BP) terms, 101 cellular component (CC) terms, and 164 molecular function (MF) terms. There were 179 signaling pathways obtained by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Twenty signaling pathways were screened out, mainly pathways in cancer, proteoglycans in cancer pathway, microRNAs in cancer pathway, and so on. Molecular docking shows that the binding energies of eight taxanes with TP53, EGFR, and AKT1 targets were less than −8.8 kcal/mol, taxanes acts on TP53, EGFR, and AKT1 targets through pathways in cancer, proteoglycans in cancer pathway and microRNAs in cancer pathway, and plays a role in treating lung cancer in biological functions such as protein binding, enzyme binding, and identical protein binding.

Funder

Jilin Province Science and Technology Development Key Program

Changchun City Science and Technology Development Program

Key Laboratory of Ministry of Education

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3