Influence of Pre-Milling of Cr3C2-25 NiCr Spray Powder on the Fatigue Life of HVOF-Sprayed Coating on ASTM A516 Steel Substrate

Author:

Oliveira Rosivânia da P. S.12ORCID,Cogo Gabriel R.3,Nascimento Brenno L.1ORCID,Reis Matheus M. S.1ORCID,Takimi Antonio2,Griza Sandro1ORCID,Bergmann Carlos P.2ORCID

Affiliation:

1. Post-Graduation Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão City 49100-000, SE, Brazil

2. Post-Graduation Program in Mining, Metallurgical and Materials Engineering, Engineering School, Federal University of Rio Grande do Sul, Porto Alegre City 90035-190, RS, Brazil

3. Rijeza Metallurgical Industry, São Leopoldo City 93140-000, RS, Brazil

Abstract

The aim of the present investigation is to evaluate the influence of the powder size of Cr3C2-25NiCr spraying powder on the fatigue behavior of HVOF-sprayed coating on the ASTM A516 steel substrate. Conventional commercial Cr3C2-25NiCr spraying powder was previously treated through high-energy milling. The crystallite sizes of milled powders were measured by X-ray diffraction and transmission electronic microscopy. Three different powder formats of the same Cr3C2-25NiCr composite were subjected to HVOF spraying to produce (i) a Milled-Coating (from high-energy milled spray powder), (ii) an Original-Coating (from conventional commercial spray powder), and (iii) a 50%–50% mixture of both (Milled + Original-Coating). The same spraying conditions were adopted for all the assessed cases. The sprayed coatings were investigated through the Knoop hardness test and SEM-EDS analysis. In addition, 3-point bending fatigue tests were conducted at different stress levels up to 107 cycles. The coating morphology and roughness effects on fatigue behavior were analyzed. The Cr3C2-25NiCr milled coating presented a lower fatigue life above the fatigue limit and a higher fatigue limit than other coatings; this outcome could be attributed to its lower surface roughness and finer grain size microstructure.

Funder

MCT/ FINEP/ CT-PETRO-Redes

e Capes/Fapitec/Promob

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3