Submillimeter-Accurate Markerless Hand–Eye Calibration Based on a Robot’s Flange Features

Author:

Đalić Velibor1,Jovanović Vedran1ORCID,Marić Petar1

Affiliation:

1. Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina

Abstract

An accurate and reliable estimation of the transformation matrix between an optical sensor and a robot is a key aspect of the hand–eye system calibration process in vision-guided robotic applications. This paper presents a novel approach to markerless hand–eye calibration that achieves streamlined, flexible, and highly accurate results, even without error compensation. The calibration procedure is mainly based on using the robot’s tool center point (TCP) as the reference point. The TCP coordinate estimation is based on the robot’s flange point cloud, considering its geometrical features. A mathematical model streamlining the conventional marker-based hand–eye calibration is derived. Furthermore, a novel algorithm for the automatic estimation of the flange’s geometric features from its point cloud, based on a 3D circle fitting, the least square method, and a nearest neighbor (NN) approach, is proposed. The accuracy of the proposed algorithm is validated using a calibration setting ring as the ground truth. Furthermore, to establish the minimal required number and configuration of calibration points, the impact of the number and the selection of the unique robot’s flange positions on the calibration accuracy is investigated and validated by real-world experiments. Our experimental findings strongly indicate that our hand–eye system, employing the proposed algorithm, enables the estimation of the transformation between the robot and the 3D scanner with submillimeter accuracy, even when using the minimum of four non-coplanar points for calibration. Our approach improves the calibration accuracy by approximately four times compared to the state of the art, while eliminating the need for error compensation. Moreover, our calibration approach reduces the required number of the robot’s flange positions by approximately 40%, and even more if the calibration procedure utilizes just four properly selected flange positions. The presented findings introduce a more efficient hand–eye calibration procedure, offering a superior simplicity of implementation and increased precision in various robotic applications.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3