SIMCB-Yolo: An Efficient Multi-Scale Network for Detecting Forest Fire Smoke

Author:

Yang Wanhong1ORCID,Yang Zhenlin1,Wu Meiyun1,Zhang Gui1,Zhu Yinfang1,Sun Yurong1ORCID

Affiliation:

1. College of Computer and Mathematics, Central South University of Forestry & Technology, Changsha 410004, China

Abstract

Forest fire monitoring plays a crucial role in preventing and mitigating forest disasters. Early detection of forest fire smoke is essential for a timely response to forest fire emergencies. The key to effective forest fire monitoring lies in accounting for the various levels of forest fire smoke targets in the monitoring images, enhancing the model’s anti-interference capabilities against mountain clouds and fog, and reducing false positives and missed detections. In this paper, we propose an improved multi-level forest fire smoke detection model based on You Only Look Once v5s (Yolov5s) called SIMCB-Yolo. This model aims to achieve high-precision detection of forest fire smoke at various levels. First, to address the issue of low precision in detecting small target smoke, a Swin transformer small target monitoring head is added to the neck of Yolov5s, enhancing the precision of small target smoke detection. Then, to address the issue of missed detections due to the decline in conventional target smoke detection accuracy after improving small target smoke detection accuracy, we introduced a cross stage partial network bottleneck with three convolutional layers (C3) and a channel block sequence (CBS) into the trunk. These additions help extract more surface features and enhance the detection accuracy of conventional target smoke. Finally, the SimAM attention mechanism is introduced to address the issue of complex background interference in forest fire smoke detection, further reducing false positives and missed detections. Experimental results demonstrate that, compared to the Yolov5s model, the SIMCB-Yolo model achieves an average recognition accuracy (mAP50) of 85.6%, an increase of 4.5%. Additionally, the mAP50-95 is 63.6%, an improvement of 6.9%, indicating good detection accuracy. The performance of the SIMCB-Yolo model on the self-built forest fire smoke dataset is also significantly better than that of current mainstream models, demonstrating high practical value.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3