Improving the Electrical Efficiency of the PV Panel via Geothermal Heat Exchanger: Mathematical Model, Validation and Parametric Analysis

Author:

Sakellariou Evangelos I.ORCID,Axaopoulos Petros J.,Sarris Ioannis E.ORCID,Abdullaev Nodirbek

Abstract

Silicon based photovoltaic modules (PV) are a wide spread technology and are used for small and large PV power stations. At the moment, the most efficient method which can be used to improve the annual electrical energy production of PVs is solar tracking systems. However, solar tracking systems increase substantially the initial cost of the investment and insert maintenance costs. During the last few decades, alternative improving methods have been investigated. These methods are based on the reduction of the PV cell temperature, which adversely affects the power production. In the present study, a system with water based photovoltaic-thermal (PVT) collector paired with geothermal heat exchanger (GHE) is compared on the electrical energy basis with a conventional PV system. As the first approach on the topic, the aim is to find out in which extent the PVT-GHE system improves the electrical energy generation by cooling down the PV cells and which parameters influence the most its energy performance. With this aim in mind, the model of the system with the PV, PVT, and GHE was formulated in TRNSYS and validated via experimental data. Meteorological data for Athens (Greece) were used and parametric analyses were conducted. The results showed that the PVT based system can increase the generated electricity from 0.61 to 5.5%. The flowrate, the size of the GHE and the number in-series connected PVTs are the parameters which influence the most the energy performance of the system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3