Construction and Characterization of Severe Fever with Thrombocytopenia Syndrome Virus with a Fluorescent Reporter for Antiviral Drug Screening

Author:

Wang Xiao12,Xu Mingyue2,Ke Huanhuan2,Ma Longda23,Li Liushuai2,Li Jiang2,Deng Fei2ORCID,Wang Manli24ORCID,Hu Zhihong12ORCID,Liu Jia2

Affiliation:

1. Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China

2. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China

3. Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China

4. Hubei Jiangxia Laboratory, Wuhan 430200, China

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) caused by a novel bunyavirus (SFTSV) is an emerging infectious disease with up to 30% case fatality. Currently, there are no specific antiviral drugs or vaccines for SFTS. Here, we constructed a reporter SFTSV in which the virulent factor nonstructural protein (NSs) was replaced by eGFP for drug screening. First, we developed a reverse genetics system based on the SFTSV HBMC5 strain. Then, the reporter virus SFTSV-delNSs-eGFP was constructed, rescued, and characterized in vitro. SFTSV-delNSs-eGFP showed similar growth kinetics with the wild-type virus in Vero cells. We further detected the antiviral efficacy of favipiravir and chloroquine against wild-type and recombinant SFTSV by the quantification of viral RNA, and compared the results with that of fluorescent assay using high-content screening. The results showed that SFTSV-delNSs-eGFP could be used as a reporter virus for antiviral drug screening in vitro. In addition, we analyzed the pathogenesis of SFTSV-delNSs-eGFP in interferon receptor-deficient (IFNAR−/−) C57BL/6J mice and found that unlike the fatal infection of the wild-type virus, no obvious pathological change or viral replication were observed in SFTSV-delNSs-eGFP-infected mice. Taken together, the green fluorescence and attenuated pathogenicity make SFTSV-delNSs-eGFP a potent tool for the future high-throughput screening of antiviral drugs.

Funder

National Key Research and Development Program of China

Key Biosafety Science and Technology Program of Hubei Jiangxia Laboratory

National Natural Science Foundation of China

Hubei Natural Science Foundation for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3