Abnormal Cholesterol Metabolism and Lysosomal Dysfunction Induce Age-Related Hearing Loss by Inhibiting mTORC1-TFEB-Dependent Autophagy

Author:

Lee Yun Yeong1ORCID,Ha Jungho12,Kim Young Sun1,Ramani Sivasubramanian1ORCID,Sung Siung12ORCID,Gil Eun Sol12,Choo Oak-Sung3,Jang Jeong Hun1,Choung Yun-Hoon12

Affiliation:

1. Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea

2. Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea

3. Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea

Abstract

Cholesterol is a risk factor for age-related hearing loss (ARHL). However, the effect of cholesterol on the organ of Corti during the onset of ARHL is unclear. We established a mouse model for the ARHL group (24 months, n = 12) and a young group (6 months, n = 12). Auditory thresholds were measured in both groups using auditory brainstem response (ABR) at frequencies of 8, 16, and 32 kHz. Subsequently, mice were sacrificed and subjected to histological analyses, including transmission electron microscopy (TEM), H&E, Sudan Black B (SBB), and Filipin staining, as well as biochemical assays such as IHC, enzymatic analysis, and immunoblotting. Additionally, mRNA extracted from both young and aged cochlea underwent RNA sequencing. To identify the mechanism, in vitro studies utilizing HEI-OC1 cells were also performed. RNA sequencing showed a positive correlation with increased expression of genes related to metabolic diseases, cholesterol homeostasis, and target of rapamycin complex 1 (mTORC1) signaling in the ARHL group as compared to the younger group. In addition, ARHL tissues exhibited increased cholesterol and lipofuscin aggregates in the organ of Corti, lateral walls, and spiral ganglion neurons. Autophagic flux was inhibited by the accumulation of damaged lysosomes and autolysosomes. Subsequently, we observed a decrease in the level of transcription factor EB (TFEB) protein, which regulates lysosomal biosynthesis and autophagy, together with increased mTORC1 activity in ARHL tissues. These changes in TFEB and mTORC1 expression were observed in a cholesterol-dependent manner. Treatment of ARHL mice with atorvastatin, a cholesterol synthesis inhibitor, delayed hearing loss by reducing the cholesterol level and maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB. The above findings were confirmed using stress-induced premature senescent House Ear Institute organ of Corti 1 (HEI-OC1) cells. The findings implicate cholesterol in the pathogenesis of ARHL. We propose that atorvastatin could prevent ARHL by maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB during the aging process.

Funder

National Research Foundation

Korean government

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3