The Upstream 1350~1250 Nucleotide Sequences of the Human ENDOU-1 Gene Contain Critical Cis-Elements Responsible for Upregulating Its Transcription during ER Stress

Author:

Lee Hung-Chieh1,Chao Hsuan-Te1,Lee Selina Yi-Hsuan2,Lin Cheng-Yung3ORCID,Tsai Huai-Jen1ORCID

Affiliation:

1. Department of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan

2. Faculty of Sciences and Engineering, Maastricht University, 6211 LK Maastricht, The Netherlands

3. Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan

Abstract

ENDOU-1 encodes an endoribonuclease that overcomes the inhibitory upstream open reading frame (uORF)-trap at 5′-untranslated region (UTR) of the CHOP transcript, allowing the downstream coding sequence of CHOP be translated during endoplasmic reticulum (ER) stress. However, transcriptional control of ENDOU-1 remains enigmatic. To address this, we cloned an upstream 2.1 kb (−2055~+77 bp) of human ENDOU-1 (pE2.1p) fused with reporter luciferase (luc) cDNA. The promoter strength driven by pE2.1p was significantly upregulated in both pE2.1p-transfected cells and pE2.1p-injected zebrafish embryos treated with stress inducers. Comparing the luc activities driven by pE2.1p and −1125~+77 (pE1.2p) segments, we revealed that cis-elements located at the −2055~−1125 segment might play a critical role in ENDOU-1 upregulation during ER stress. Since bioinformatics analysis predicted many cis-elements clustered at the −1850~−1250, we further deconstructed this segment to generate pE2.1p-based derivatives lacking −1850~−1750, −1749~−1650, −1649~−1486, −1485~−1350 or −1350~−1250 segments. Quantification of promoter activities driven by these five internal deletion plasmids suggested a repressor binding element within the −1649~−1486 and an activator binding element within the −1350~−1250. Since luc activities driven by the −1649~−1486 were not significantly different between normal and stress conditions, we herein propose that the stress-inducible activator bound at the −1350~−1250 segment makes a major contribution to the increased expression of human ENDOU-1 upon ER stresses.

Funder

National Science Council, Taiwan

MacKay Medical College, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3