ER Stress-Perturbed Intracellular Protein O-GlcNAcylation Aggravates Podocyte Injury in Diabetes Nephropathy

Author:

Song Shicong12,Hu Tiantian12,Shi Xu12,Jin Yongjie12,Liu Sirui12,Li Xuehong12,Zou Wei12,Wang Cheng12ORCID

Affiliation:

1. Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Internal Medicine Building Room #606, 52 Meihua Dong Road, Zhuhai 519000, China

2. Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai 519000, China

Abstract

Diabetes nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide, and podocyte injury is the central contributor to the progression of DN. Despite the emerging evidence that has established the importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of DN, abnormal protein O-GlcNAcylation is also augmented. Currently, the mechanism associating these two hyperglycemia-induced disorders remains poorly understood. This study intended to elucidate whether ER stress drives hyper-protein O-GlcNAcylation to cause podocyte injury in DN. We used both type 1 and type 2 DN models to confirm the occurrence of ER stress and excessive protein O-GlcNAcylation, and then podocyte purification was also conducted for further investigation. Nephroseq V5 data were mined and in vitro studies were applied to reveal the involvement of ER stress and hyper-O-GlcNAcylation in podocyte injury. Our results indicated that ER stress was induced in both type 1 and type 2 DN, and the human RNA-seq data from Nephroseq V5 showed that O-GlcNAcylation-related genes were significantly upregulated in the DN patients. We further demonstrated that ER stress occurred prior to hyper-O-GlcNAc modification and that pharmacologically inhibited protein O-GlcNAcylation can help decrease the podocyte apoptosis induced by hyperglycemia. Together, these discoveries will aid in uncovering the activation of the ER stress–O-GlcNAcylation axis in podocyte injury under DN, which will help open up new therapeutic approaches for preventing DN progression.

Funder

Five-five Project of the Fifth Affiliated Hospital Sun Yat-sen University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3