Computational Exploration of Minimum Energy Reaction Pathway of N2O Formation from Intermediate I of P450nor Using an Active Center Model

Author:

Kanematsu Yusuke12ORCID,Kondo Hiroko X.23ORCID,Takano Yu2ORCID

Affiliation:

1. Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

2. Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan

3. Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan

Abstract

P450nor is a heme-containing enzyme that catalyzes the conversion of nitric oxide (NO) to nitrous oxide (N2O). Its catalytic mechanism has attracted attention in chemistry, biology, and environmental engineering. The catalytic cycle of P450nor is proposed to consist of three major steps. The reaction mechanism for the last step, N2O generation, remains unknown. In this study, the reaction pathway of the N2O generation from the intermediate I was explored with the B3LYP calculations using an active center model after the examination of the validity of the model. In the validation, we compared the heme distortions between P450nor and other oxidoreductases, suggesting a small effect of protein environment on the N2O generation reaction in P450nor. We then evaluated the electrostatic environment effect of P450nor on the hydride affinity to the active site with quantum mechanics/molecular mechanics (QM/MM) calculations, confirming that the affinity was unchanged with or without the protein environment. The active center model for P450nor showed that the N2O generation process in the enzymatic reaction undergoes a reasonable barrier height without protein environment. Consequently, our findings strongly suggest that the N2O generation reaction from the intermediate I depends sorely on the intrinsic reactivity of the heme cofactor bound on cysteine residue.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Cell Biology and Molecular Basis of Denitrification;Zumft;Microbiol. Mol. Biol. Rev.,1997

2. Nitric Oxide and Vasodilation in Human Limbs;Joyner;J. Appl. Physiol.,1997

3. Why Nitric Oxide?;Traylor;Biochemistry,1992

4. Biochemistry of Nitric Oxide and Its Redox-Activated Forms;Stamler;Science,1992

5. The Molecule of the Year;Koshland;Science,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3