An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors

Author:

Tachibana Tomoko12,Oyama Tomoko Gowa3ORCID,Yoshii Yukie14,Hihara Fukiko1,Igarashi Chika1,Shinada Mitsuhiro12ORCID,Matsumoto Hiroki1,Higashi Tatsuya1,Kishimoto Toshihiko2,Taguchi Mitsumasa3ORCID

Affiliation:

1. Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan

2. Faculty of Science, Toho University, Chiba 274-8510, Japan

3. Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Gunma 370-1292, Japan

4. Visible Cancer Drug Research Unit, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan

Abstract

Managing metastasis at the early stage and detecting and treating submillimeter tumors at early metastasis are crucial for improving cancer prognosis. Angiogenesis is a critical target for developing drugs to detect and inhibit submillimeter tumor growth; however, drug development remains challenging because there are no suitable models for observing the submillimeter tumor mass and the surrounding blood vessels in vivo. We have established a xenograft subcutaneous submillimeter tumor mouse model with HT-29-RFP by transplanting a single spheroid grown on radiation-crosslinked gelatin hydrogel microwells. Here, we developed an in vivo dual-observation method to observe the submillimeter tumor mass and tumor-surface blood vessels using this model. RFP was detected to observe the tumor mass, and a fluorescent angiography agent FITC-dextran was administered to observe blood vessels via stereoscopic fluorescence microscopy. The anti-angiogenesis agent regorafenib was used to confirm the usefulness of this method. This method effectively detected the submillimeter tumor mass and tumor-surface blood vessels in vivo. Regorafenib treatment revealed tumor growth inhibition and angiogenesis downregulation with reduced vascular extremities, segments, and meshes. Further, we confirmed that tumor-surface blood vessel areas monitored using in vivo dual-observation correlated with intratumoral blood vessel areas observed via fluorescence microscopy with frozen sections. In conclusion, this method would be useful in developing anti-angiogenesis agents against submillimeter tumors.

Funder

QST Diversity Promotion Collaborative Research Grant

QST Creative Research Grant

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3