Reprogramming in Candida albicans Gene Expression Network under Butanol Stress Abrogates Hyphal Development

Author:

Anand Rajesh1,Kashif Mohammad1,Pandit Awadhesh2,Babu Ram3,Singh Agam P.1

Affiliation:

1. Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India

2. Next Generation Sequencing Facility, National Institute of Immunology, New Delhi 110067, India

3. Department of Botany, Kirori Mal College, University of Delhi, Delhi 110007, India

Abstract

Candida albicans is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on Candida albicans, it was placed in O+ve complete human serum with butanol (1% v/v). The Candida transcriptome under butanol stress was then identified by mRNA sequencing. Studies including electron microscopy demonstrated the inhibition of hyphae formation in Candida under the influence of butanol, without any significant alteration in growth rate. The numbers of genes upregulated in the butanol in comparison to the serum alone were 1061 (20 min), 804 (45 min), and 537 (120 min). Candida cells exhibited the downregulation of six hypha-specific transcription factors and the induction of four repressor/regulator genes. Many of the hypha-specific genes exhibited repression in the medium with butanol. The genes related to adhesion also exhibited repression, whereas, among the heat-shock genes, three showed inductions in the presence of butanol. The fungal-specific genes exhibited induction as well as repression in the butanol-treated Candida cells. Furthermore, ten upregulated genes formed the core stress gene set in the presence of butanol. In the gene ontology analysis, enrichment of the processes related to non-coding RNA, ribosome biosynthesis, and metabolism was observed in the induced gene set. On the other side, a few GO biological process terms, including biofilm formation and filamentous growth, were enriched in the repressed gene set. Taken together, under butanol stress, Candida albicans is unable to extend hyphae and shows growth by budding. Many of the genes with perturbed expression may have fitness or virulence attributes and may provide prospective sites of antifungal targets against C. albicans.

Funder

SERB Fast Track Young Scientist scheme

NII core

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3