3D Printed Model of Extrahepatic Biliary Ducts for Biliary Stent Testing

Author:

Thomas Joanna,Patel Sagar,Troop Leia,Guru Robyn,Faist Nicholas,Bellott Brian J.,Esterlen Bethany A.

Abstract

Several inflammatory conditions of the bile ducts cause strictures that prevent the drainage of bile into the gastrointestinal tract. Non-pharmacological treatments to re-establish bile flow include plastic or self-expanding metal stents (SEMs) that are inserted in the bile ducts during endoscopic retrograde cholangiopancreatography (ERCP) procedures. The focus of this study was to 3D print an anatomically accurate model of the extrahepatic bile ducts (EHBDs) with tissue-like mechanical properties to improve in vitro testing of stent prototypes. Following generation of an EHBD model via computer aided design (CAD), we tested the ability of Formlabs SLA 3D printers to precisely print the model with polymers selected based on the desired mechanical properties. We found the printers were reliable in printing the dimensionally accurate EHBD model with candidate polymers. Next, we evaluated the mechanical properties of Formlabs Elastic (FE), Flexible (FF), and Durable (FD) resins pre- and post-exposure to water, saline, or bile acid solution at 37 °C for up to one week. FE possessed the most bile duct-like mechanical properties based on its elastic moduli, percent elongations at break, and changes in mass under all liquid exposure conditions. EHBD models printed in FE sustained no functional damage during biliary stent deployment or when tube connectors were inserted, and provided a high level of visualization of deployed stents. These results demonstrate that our 3D printed EHBD model facilitates more realistic pre-clinical in vitro testing of biliary stent prototypes.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3