Fractional Calculus Meets Neural Networks for Computer Vision: A Survey

Author:

Coelho Cecília1ORCID,Costa M. Fernanda P.1ORCID,Ferrás Luís L.12ORCID

Affiliation:

1. Centre of Mathematics (CMAT), University of Minho, 4710-057 Braga, Portugal

2. Department of Mechanical Engineering (Section of Mathematics) and CEFT—Centro de Estudos de Fenómenos de Transporte—FEUP, University of Porto, 4200-465 Porto, Portugal

Abstract

Traditional computer vision techniques aim to extract meaningful information from images but often depend on manual feature engineering, making it difficult to handle complex real-world scenarios. Fractional calculus (FC), which extends derivatives to non-integer orders, provides a flexible way to model systems with memory effects and long-term dependencies, making it a powerful tool for capturing fractional rates of variation. Recently, neural networks (NNs) have demonstrated remarkable capabilities in learning complex patterns directly from raw data, automating computer vision tasks and enhancing performance. Therefore, the use of fractional calculus in neural network-based computer vision is a powerful method to address existing challenges by effectively capturing complex spatial and temporal relationships in images and videos. This paper presents a survey of fractional calculus neural network-based (FC NN-based) computer vision techniques for denoising, enhancement, object detection, segmentation, restoration, and NN compression. This survey compiles existing FFC NN-based approaches, elucidates underlying concepts, and identifies open questions and research directions. By leveraging FC’s properties, FC NN-based approaches offer a novel way to improve the robustness and efficiency of computer vision systems.

Funder

Fundação para a Ciência e Tecnologia

FCT and Google Cloud partnership

FCT

national funds through the FCT/MCTES

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3