Rational Design and Fabrication of ZnONPs Functionalized Sericin/PVA Antimicrobial Sponge

Author:

Ai Lisha,He HuaweiORCID,Wang Peng,Cai Rui,Tao Gang,Yang Meirong,Liu Liying,Zuo HuaORCID,Zhao Ping,Wang Yejing

Abstract

The interests of developing antimicrobial biomaterials based on silk sericin from Bombyx mori cocoon, have been shooting up in the last decades. Sericin is a valuable natural protein owing to its hydrophilicity, biodegradability, and biocompatibility. Here, we fabricated a sponge with antibacterial capacities for potential wound dressing application. By co-blending of sericin, polyvinyl alcohol (PVA) and zinc oxide nanoparticles (ZnONPs), the ZnONPs-sericin/PVA composite sponge (ZnONPs-SP) was successfully prepared after freeze-drying. Scanning electron microscopy showed the porous structure of ZnONPs-SP. Energy dispersive spectroscopy indicated the existence of Zn in the sponge. X-ray diffractometry revealed the hexagonal wurtzite structure of ZnONPs. Fourier transform infrared spectroscopy showed the biologic coupling of ZnONPs and sericin resulted in a decrease of α-helix and random coil contents, and an increase of β-sheet structure in the sponge. The swelling experiment suggested ZnONPs-SP has high porosity, good hydrophilicity, and water absorption capability. The plate bacterial colony counting coupled with growth curve assays demonstrated that the composite sponge has an efficiently bacteriostatic effect against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the cell compatibility analysis suggested the composite sponge has excellent cytocompatibility on NIH3T3 cells. In all, ZnONPs-SP composite sponge has significant potentials in biomaterials such as wound dressing and tissue engineering.

Funder

National Natural Science Foundation of China

State Key Program of the National Natural Science Foundation of China; Chongqing graduate research and innovation project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Waste to Wealth: Exploring the Versatile Prospects of Discarded Silk Sericin;ACS Sustainable Chemistry & Engineering;2024-01-10

2. Accelerated self-assembly of filipin proteins and formation of hydrogels;Journal of Macromolecular Science, Part B;2024-01-08

3. Trends in silk biomaterials;Silk-Based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine;2024

4. Development of basil seed mucilage (a heteropolysaccharide) – Polyvinyl alcohol biopolymers incorporating zinc oxide nanoparticles;International Journal of Biological Macromolecules;2023-12

5. Dietary nitrate accelerates the healing of infected skin wounds in mice by increasing microvascular density;Biochemical and Biophysical Research Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3