The Condition of Four Coral Reefs in Timor-Leste before and after the 2016–2017 Marine Heatwave

Author:

Kim Catherine J. S.ORCID,Roelfsema ChrisORCID,Dove Sophie,Hoegh-Guldberg Ove

Abstract

El Niño Southern Oscillation global coral bleaching events are increasing in frequency, yet the severity of mass coral bleaching is not geographically uniform. Based in Timor-Leste, the present project had two major objectives: (1) assess the baseline of reefs and coral health at four sites and (2) explore water quality and climate-related changes in ocean temperatures on these understudied reef systems. The impacts of climate change were surveyed on coral reefs before and after the 2016–2017 global underwater heatwave, (principally by following coral mortality). Temperature loggers were also deployed between surveys, which were compared to Coral Reef Watch (CRW) experimental virtual station sea surface temperature (SST). CRW is an important and widely used tool; however, we found that the remotely sensed SST was significantly warmer (>1 °C) than in situ temperature during the austral summer accruing 5.79-degree heating weeks. In situ temperature showed no accumulation. There were significant differences in coral cover, coral diversity, and nutrient concentrations between sites and depths, as well as a low prevalence of disease recorded in both years. Change in coral cover between surveys was attributed to reef heterogeneity from natural sources and localized anthropogenic impacts. Timor-Leste has both pristine and impacted reefs where coral cover and community composition varied significantly by site. Degradation was indicative of impacts from fishing and gleaning. The comparison of in situ temperature and remotely sensed SST indicated that bleaching stress in Timor-Leste is potentially mitigated by seasonal coastal upwelling during the Northwest monsoon season. As a climate refugium, the immediate conservation priority lies in the mitigation of localized anthropogenic impacts on coral reefs through increasing the management of expanding human-related sedimentation and fishing.

Funder

Society of Conservation Biology

Global Change Institute, University of Queensland

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3