A Fast LC-MS/MS Methodology for Estimating Savolitinib in Human Liver Microsomes: Assessment of Metabolic Stability Using In Vitro Metabolic Incubation and In Silico Software Analysis

Author:

Attwa Mohamed W.1ORCID,AlRabiah Haitham1,Abdelhameed Ali S.1ORCID,Kadi Adnan A.1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Savolitinib (Orpathys®), was developed by (HUTCHMED (Shanghai, China) and, AstraZeneca (Gaithersburg, Maryland, USA), is an inhibitor of the c-Met receptor tyrosine kinase that is orally bioavailable. It was designed for the treatment of pillary and clear-cell renal-cell carcinoma (RCC), colorectal cancer, gastric cancer, and metastatic non-small-cell lung cancer (NSCLC). The current work aimed to develop a rapid, specific, green, and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) methodology for estimating savolitinib (SVB) in human liver microsomes (HLMs) with application to an in vitro metabolic stability assessment of SVB in HLMs. The validation steps of the current LC-MS/MS methodology in the HLMs were carried out following US FDA bioanalytical method validation guidelines including sensitivity, selectivity, linearity, accuracy, stability, precision, extraction recovery, and matrix effect. SVB and olmutinib (OLM) were chromatographically separated on an Eclipse Plus C8 column using an isocratic mobile phase. SVB parent ions were generated using the positive mode of an electrospray ionization (ESI) source. SVB daughter ions were detected and quantified using the multiple reaction monitoring (MRM) mode of a triple quadrupole mass analyser. The constructed SVB calibration curve showed linearity over the range from 1 to 3000 ng/mL. The interday and intraday accuracy and precision of the developed LC-MS/MS analytical methodology were −6.67%–4.11% and −0.51%–8.75%, respectively. A lower limit of quantification (LLOQ) of 0.87 ng/mL confirmed the sensitivity of the established method. Furthermore, the eco-scale methodology using the in silico AGREE software was used for the greenness assessment of the current LC-MS/MS method, and the outcomes showed that the established method was very eco-friendly. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of SVB were 33.05 mL/min/kg and 24.54 min, respectively. SVB exhibited a moderate extraction ratio. The current study is the first to establish and validate LC-MS/MS for estimating SVB and assessing the metabolic stability of SVB.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3