Phosphate Recovery Mechanism from Low P-Containing Wastewaters via CaP Crystallization Using Apatite as Seed: Seed Adsorption, Surface-Induced Crystallization, or Ion Clusters Aggregation?

Author:

Nie Xiaobao12,Li Yinan1,Wan Junli12,Ouyang Shuai1,Wang Zhengbo1,Wang Guoqi1,Jiang Heng3

Affiliation:

1. School of Hydraulic & Environmental Engineering, Changsha University of Science and Technology, No. 960, Section 2, Wanjiali South Road, Tianxin District, Changsha 410114, China

2. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China

3. Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd., Changsha 410007, China

Abstract

Low P-containing wastewaters (LPWs) exhibit huge P recovery potential, considering their larger volume. P recovery via CaP crystallization using apatite as seed is documented as being potentially well suited for LPWs. However, its responsible mechanisms remain a subject for debate. Taking hydroxyapatite (HAP) as the seed of LPWs, this paper conducted HAP adsorption/dissolution experiments, titration experiments, and P recovery experiments to distinguish the primary responsible mechanism. Results showed that it was HAP dissolution, not P adsorption, that occurred when the initial P concentration was no higher than 5 mg/L, ruling out adsorption mechanism of P recovery from LPWs using HAP as the seed. Significant OH− consumption and rapid P recovery occurred simultaneously within the first 60 s in titration experiments, suggesting CaP crystallization should be responsible for P recovery. Moreover, the continuous increase in P recovery efficiency with seed dosages observed in P recovery experiments seemed to follow well the mechanism of pre-nucleation ion clusters (PNCs) aggregation. During PNCs aggregation, P aggregates with Ca2+ quickly, generating CaP PNCs; then, CaP PNCs aggregate with seed particles, followed by CaP PNCs fusion, and ultimately transform into fines attached to the seed surface. PNCs’ aggregation mechanism was further supported by a comparison of seed SEM images before and after P recovery, since denser and smaller rod-shaped fines were observed on the seed surface after P recovery. This study suggests that PNCs’ aggregation is the dominant mechanism responsible for the recovery of P from LPWs via CaP crystallization using HAP as the seed.

Funder

Environmental Protection Research Project of Hunan Province

Major Science and Technology Projects of the Ministry of Water Resources of China

Special fund for building Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone in Hunan Province

Double First Class Construction Project of Changsha university of science and technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3