Development and Validation of a Bioanalytical Method for the Quantification of Nitrated Fatty Acids in Plasma Using LC-MS/MS: Application to Cardiovascular Patients

Author:

Herz Magy1,Gad Mohamed2ORCID,Hanafi Rasha1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo 11835, Egypt

2. Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt

Abstract

Nitrated fatty acids (NO2-FAs) are a newly discovered class of biologically active compounds with distinct biochemical features that induce physiologically beneficial alterations in transcriptional regulatory protein function, leading to a variety of modulatory and protective actions. The most common NO2-FAs identified in vivo so far are nitro oleic acid (NO2-OA), nitro linoleic acid (NO2-LA) and its structural isomer nitro-conjugated linoleic acid (NO2-cLA). Analytical limitations that compromise accurate quantitation of these endogenous compounds are their low concentrations, compromised stability and different distribution profiles in tissues and biofluids. As a result, reliable analytical methods for the quantitative determination of their endogenous levels are rare. Only NO2-OA was quantified by GC-MS while LC-MS methods are still scarce. In this work, an LC-MS/MS bioanalytical method was developed and validated for the quantification of NO2-OA and NO2-LA in human plasma via a standard addition protocol after protein precipitation, liquid extraction and LC-MS/MS analysis in the negative ion mode. Quantification was performed via multiple reaction monitoring of the transitions m/z 326 > 46 and m/z 324 > 46 for NO2-OA and NO2-LA, respectively, and m/z 269 > 250 for the internal standard heptadecanoic acid. Linear responses were observed for both analytes over the studied range (R2 = 0.9805 and 0.9644 for NO2-OA and NO2-LA, respectively). Sufficient accuracy and precision were also achieved at low, medium and high levels within the linearity range. The limits of quantification of our method (2 nM for both NO2-FAs) were below basal endogenous levels, thereby providing a good tool to accurately measure these NO2-FAs in plasma. We applied the validated method to compare NO2-OA and NO2-LA levels in the plasma of 28 ischemic heart disease (IHD) patients and 18 healthy controls. The levels of NO2-OA were found to be significantly higher in the plasma of patients (21.7 ± 9.8 nM) versus healthy controls (12.6 ± 6 nM) (p-value < 0.01). Whereas the levels of NO2-LA were comparable in both groups (3 ± 1 nM in patients, 3.2 ± 1.7 nM in controls, p-value = 0.87288). The early elevation of NO2-OA in plasma samples, which were collected 2–3 h post myocardial injury, implies the potential use of NO2-OA levels as a biomarker for IHD after further investigation with a larger number of IHD patients. To our knowledge, this is the first comparative study on the levels of NO2-FAs in humans with and without IHD.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3