Spatiotemporal Variations in Human Birth Weight Are Associated with Multiple Thermal Indices

Author:

Jensen Per M.1ORCID,Sørensen Marten1ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark

Abstract

Human populations are scattered worldwide and live under widely different climates. Like other mammals, humans respond to climatic influences through various processes involving behavior, physiology, and various forms of adaptation. Human populations can be explored in investigating patterns of adaptation because many of their biological attributes have been monitored for over a century. Here, we evaluated the association between several thermal indices and human birth weight (BW) and offered some initial observations on the temporal integration of thermal cues associated with pregnancy outcomes. We compiled three datasets: (1) a dataset with global coverage of recent BWs; (2) an extended time series for seven European countries; and (3) a time series for four countries in equatorial Africa. Each dataset was analyzed for associations between BW and mean annual temperature, as well as seasonal and daily amplitudes. Mean annual temperatures, as well as seasonal and daily amplitudes, delivered consistent and comparable impacts in our analyses. The thermal indices can explain approx. 80% of the global variation in BW and 25–50% of the BW variation in time series covering the last 70 to 120 years. Mean BW in larger aggregates of humans (i.e., millions) is associated with several thermal indices, likely associated with systematic differences in proximate factors (e.g., maternal height, weight, food intake) between populations. This study underlines the diverse impact of the thermal environment on human reproduction, but it also underscores that this impact is less pronounced for differences in mean BW with respect to different communities, and it is possibly undetectable and/or irrelevant with respect to differences between individuals.

Publisher

MDPI AG

Reference109 articles.

1. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability, Cambridge University Press.

2. Climate change risks to US infrastructure: Impacts on roads, bridges, coastal development, and urban drainage;Neumann;Clim. Change,2015

3. Yuan, X., Li, S., Chen, J., Yu, H., Yang, T., Wang, C., Huang, S., Chen, H., and Ao, X. (2024). Impacts of global climate change on agricultural production: A comprehensive review. Agronomy, 14.

4. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends;Rupasinghe;Acta Trop.,2022

5. Impact of climate change on biodiversity and ecosystems services;Onoh;IIARD Int. J. Geogr. Environ. Manag.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3