Geoinformatic Analysis of Rainfall-Triggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping

Author:

Argyriou Athanasios V.ORCID,Polykretis ChristosORCID,Teeuw Richard M.ORCID,Papadopoulos NikosORCID

Abstract

Among several natural and anthropogenic conditioning factors that control slope instability, heavy rainfall is a key factor in terms of triggering landslide events. In the Mediterranean region, Crete suffers the frequent occurrence of heavy rainstorms that act as a triggering mechanism for landslides. The Mediterranean island of Crete suffers from frequent occurrences of heavy rainstorms, which often trigger landslides. Therefore, the spatial and temporal study of recent storm/landslide events and the projection of potential future events is crucial for long-term sustainable land use in Crete and Mediterranean landscapes with similar geomorphological settings, especially with climate change likely to produce bigger and more frequent storms in this region. Geoinformatic technologies, mainly represented by remote sensing (RS) and Geographic Information Systems (GIS), can be valuable tools towards the analysis of such events. Considering an administrative unit of Crete (municipality of Rethymnon) for investigation, the present study focused on using RS and GIS-based approaches to: (i) detect landslides triggered by heavy rainstorms during February 2019; (ii) determine the interaction between the triggering factor of rainfall and other conditioning factors; and (iii) estimate the spatial component of a hazard map by spatially indicating the possibility for rainfall-triggered landslides when similar rainstorms take place in the future. Both landslide detection and hazard mapping outputs were validated by field surveys and empirical analysis, respectively. Based on the validation results, geoinformatic technologies can provide an ideal methodological framework for the acquisition of landslide-related knowledge, being particularly beneficial to land-use planning and decision making, as well as the organization of emergency actions by local authorities.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3