Phytochemicals from Piper betle (L.) as Putative Modulators of a Novel Network-Derived Drug Target for Coronary Artery Disease: An In Silico Study

Author:

Sudhan 1,Janakiraman 1,Ahmad Sheikh F.2ORCID,Wani Abubakar3,Ahmed Shiek S. S. J.1

Affiliation:

1. Drug Discovery and Multiomics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India

2. Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Immunology, St. Jude Children’s Research Hospital Memphis, Memphis, TN 38105, USA

Abstract

Coronary artery disease (CAD) is a leading cause of death worldwide. Despite effective anti-CAD drugs, the rising mortality suggests that more pharmacological targets need to be discovered to improve treatment effectiveness. This study explores and evaluates traditional medicinal plant (Piper betle (L.)) compounds against a new target identified through protein network analysis. Our network analysis suggests that the GRB2 protein could be a potential target that links most of the pathological pathway-related proteins in CAD. As a result, we evaluated potential compounds from Piper betle (L.) through ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling, docking, and molecular dynamics (MDs) simulation against the GRB2. The ADMET screening detected 49 druggable phytochemicals in Piper betle (L.). Further, screening through molecular docking showed that piperbetol has a higher predicted affinity towards the dimeric form of GRB2 (−8.10 kcal/mol) than other analyzed phytochemicals. Additionally, MD simulation demonstrated that piperbetol formed a stable complex with GRB2 during the simulation. In conclusion, piperbetol from Piper betle showed favorable binding with the identified CAD target. Further investigations are needed for pharmaceutical translation.

Funder

Researchers Supporting

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3