Affiliation:
1. Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, The Kings Buildings, Edinburgh EH9 3FB, UK
Abstract
Successful cultivation of mammalian cells must consider careful formulation of culture media consisting of a variety of substrates and amino acids. A widely cited method for quantifying metabolic networks of mammalian cultures is dynamic flux balance modelling. Application of in-silico techniques allows researchers to circumvent time-consuming and costly in-vivo experimentation. Dynamic simulation and optimisation of reliable models allows for the visualization of opportunities to improve throughputs of target protein products, such as monoclonal antibodies (mAbs). This study presents a sensitivity analysis comparing dynamic optimisation results for industrial-scale fed-batch bioreactors, considering a variety of initial conditions. Optimized feeding trajectories are computed via Nonlinear Programming (NLP) model, employing the established IPOPT solver. Glucose, then glutamine, then asparagine, can lead to improved mAb yields and viable cell counts.
Funder
Engineering and Physical Sciences Research Council (EPSRC) and UKRI, for a Doctoral Training Partnership (DTP) PhD Scholarship
Royal Society Short Industrial Fellowship
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献