Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022

Author:

Pop Nicolae,Marin MarinORCID,Vlase SorinORCID

Abstract

In engineering practice, structures with identical components or parts are useful from several points of view: less information is needed to describe the system; designs can be conceptualized quicker and easier; components are made faster than during traditional complex assembly; and finally, the time needed to achieve the structure and the cost involved in manufacturing decrease. Additionally, the subsequent maintenance of this system then becomes easier and cheaper. The aim of this Special Issue is to provide an opportunity for international researchers to share and review recent advances in the finite element modeling of computational friction contact mechanics. Numerical modeling in mathematics, mechanical engineering, computer science, computers, etc. presents many challenges. The finite element method applied in solid mechanics was designed by engineers to simulate numerical models in order to reduce the design costs of prototypes, tests and measurements. This method was initially validated only by measurements but gave encouraging results. After the discovery of Sobolev spaces, the abovementioned results were obtained, and today, numerous researchers are working on improving this method. Some of applications of this method in solid mechanics include mechanical engineering, machine and device design, civil engineering, aerospace and automotive engineering, robotics, etc. Frictional contact is a complex phenomenon that has led to research in mechanical engineering, computational contact mechanics, composite material design, rigid body dynamics, robotics, etc. A good simulation requires that the dynamics of contact with friction be included in the formulation of the dynamic system so that an approximation of the complex phenomena can be made. To solve these linear or nonlinear dynamic systems, which often have non-differentiable terms, or discontinuities, software that considers these high-performance numerical methods and computers with high computing power are needed. This Special Issue is dedicated to this kind of mechanical structure and to describing the properties and methods of analysis of these structures. Discrete or continuous structures in static and dynamic cases are also considered. Additionally, theoretical models, mathematical methods and numerical analysis of these systems, such as the finite element method and experimental methods, are used in these studies. Machine building, automotive, aerospace and civil engineering are the main areas in which such applications appear, but they can also be found in most other engineering fields. With this Special Issue, we want to disseminate knowledge among researchers, designers, manufacturers and users in this exciting field.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference22 articles.

1. A Method for the Study of the Vibration of Mechanical Bars Systems with Symmetries;Vlase;ACTA Tech. Napoc. Ser. Appl. Math. Mech. Eng.,2017

2. New analytical method based on dynamic response of planar mechanical elastic systems;Scutaru;Bound. Value Probl.,2020

3. On the decay of exponential type for the solutions in a dipolar elastic body;Marin;J. Taibah Univ. Sci.,2020

4. Coupled transverse and torsional vibrations in a mechanical system with two identical beams;Vlase;AIP Adv.,2017

5. Considerations of the transverse vibration of a mechanical system with two identical bars;Vlase;Proc. Inst. Mech. Engineers. Part L J. Mater. Des. Appl.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3