Multiaxial Strength Criterion Model of Concrete Based on Random Forest

Author:

Chen Xingqiao,Zheng Dongjian,Liu YongtaoORCID,Wu XinORCID,Jiang Haifeng,Qiu Jianchun

Abstract

The concrete strength criterion is the basis of strength analysis and evaluation under a complex stress state. In this paper, a large number of multiaxial strength tests were carried out, and many mathematical expressions of strength criteria were proposed based on the geometric characteristics and the assumption of a convex function. However, the rationality of the assumption of a convex function limits the use of these strength criteria. In particular, misjudgment will occur near the failure curve surface. Therefore, this paper does not assume the shape function of the criterion in advance. By collecting experimental data and using a machine learning method, it proposes a method of hidden function of failure curve surface. Based on 777 groups of experimental data, the random forest (RF), the back propagation neural network (BP) and the radial basis neural network (RBF) models were used to analyze and verify the feasibility and effectiveness of the method. Subsequently, the results were compared with the Ottosen strength criterion, the Guo Wang strength criterion and the Drucker–Prager (DP) strength criterion. The results show that the consistency between the strength criterion model established by the machine learning algorithm (especially random forest) and the experimental data is higher than the convex function multiaxis strength criterion of the preset failure surface shape. Moreover, the physical significance is clearer, the deficiency of the convex function failure surface hypothesis is avoided and the established multiaxial strength criterion of concrete is more universal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference47 articles.

1. Chen, W.F. (1982). Plasticity in Reinforced Concrete, McGraw-Hill.

2. Strength of concrete under combined stresses;Bresler;J. Proc.,1958

3. William, K.J., and Warnke, E.P. (1975). Constitutive Models for the Triaxial Behavior of Concrete, ETH.

4. A failure criterion for concrete;Ottosen;J. Eng. Mech.,1977

5. Hesieh, S.S., Ting, E.C., and Chen, W.F. (1979, January 17–19). An elasticity-fracture model for concrete. In Proceeding of 3rd Engineering Mechanics Division, Special Conference ASCE, Austin, TX, USA.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3