Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges

Author:

Liu Guoqing1,Xu Qing1,Abou-Elwafa Salah F.2ORCID,Alshehri Mohammed Ali3ORCID,Zhang Tao1ORCID

Affiliation:

1. Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

2. Agronomy Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt

3. Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract

Hydrothermal carbonization (HTC) technology transforms organic biomass components, such as cellulose and lignin, into valuable carbon materials, gases and inorganic salts through hydrolysis, degradation and polymerization, with significant advantages over traditional methods by reducing energy consumption, lowering pollutant emissions and enhancing carbonization efficiency. In the context of global climate change, HTC plays a critical role in water environment management by addressing industrial, agricultural, and domestic wastewater challenges. The application of HTC extends to wastewater treatment, where hydrochar effectively adsorbs heavy metals, organic compounds, and anions, thereby improving water quality. However, challenges remain, such as optimizing the process for diverse raw materials, managing economic costs, and addressing environmental and social impacts. Future research and policy support are essential for advancing HTC technology. By enhancing reaction mechanisms, developing catalysts, and promoting international cooperation, HTC can significantly contribute towards achieving carbon neutrality goals and fostering sustainable development.

Funder

Undergraduate Research Program of China Agricultural University

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3