Methodology for Discontinuity Factors Generation for Simplified P3 Solver Based on Nodal Expansion Formulation

Author:

Xu Yuchao,Hou JasonORCID,Ivanov KostadinORCID

Abstract

The Simplified Spherical Harmonic (SPN) approximation was first introduced as a three-dimensional (3D) extension of the plane-geometry Spherical Harmonic (PN) equations. A third order SPN (SP3) solver, recently implemented in the Nodal Expansion Method (NEM), has shown promising performance in the reactor core neutronics simulations. This work is focused on the development and implementation of the transport-corrected interface and boundary conditions in an NEM SP3 solver, following recent published work on the rigorous SPN theory for piecewise homogeneous regions. A streamlined procedure has been developed to generate the flux zero and second order/moment discontinuity factors (DFs) of the generalized equivalence theory to minimize the error introduced by pin-wise homogenization. Moreover, several colorset models with varying sizes and configurations are later explored for their capability of generating DFs that can produce results equivalent to that using the whole-core homogenization model for more practical implementations. The new developments are tested and demonstrated on the C5G7 benchmark. The results show that the transport-corrected SP3 solver shows general improvements to power distribution prediction compared to the basic SP3 solver with no DFs or with only the zeroth moment DF. The complete equivalent calculations using the DFs can almost reproduce transport solutions with high accuracy. The use of equivalent parameters from larger size colorset models show a slightly reduced prediction error than that using smaller colorset models in the whole-core calculations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3