Mapping Mangrove Above-Ground Carbon Using Multi-Source Remote Sensing Data and Machine Learning Approach in Loh Buaya, Komodo National Park, Indonesia

Author:

Rijal Seftiawan SamsuORCID,Pham Tien DatORCID,Noer’Aulia Salma,Putera Muhammad Ikbal,Saintilan Neil

Abstract

Mangrove forests provide numerous valuable ecosystem services and can sequester a large volume of carbon that can help mitigate climate change impacts. Modeling mangrove carbon with robust and valid approaches is crucial to better understanding existing conditions. The study aims to estimate mangrove Above-Ground Carbon (AGC) at Loh Buaya located in the Komodo National Park (Indonesia) using novel Extreme Gradient Boosting (XGB) and Genetic Algorithm (GA) analyses integrating multiple sources of remote sensing (optical, Synthetic Aperture Radar (SAR), and Digital Elevation Model (DEM)) data. Several steps were conducted to assess the model’s accuracy, starting with a field survey of 50 sampling plots, processing the images, selecting the variables, and examining the appropriate machine learning (ML) models. The effectiveness of the proposed XGB-GA was assessed via comparison with other well-known ML techniques, i.e., the Random Forest (RF) and the Support Vector Machine (SVM) models. Our results show that the hybrid XGB-GA model yielded the best results (R2 = 0.857 in the training and R2 = 0.758 in the testing phase). The proposed hybrid model optimized by the GA consisted of six spectral bands and five vegetation indices generated from Sentinel 2B together with a national DEM that had an RMSE = 15.40 Mg C ha−1 and outperformed other ML models for quantifying mangrove AGC. The XGB-GA model estimated mangrove AGC ranging from 2.52 to 123.89 Mg C ha−1 (with an average of 57.16 Mg C ha−1). Our findings contribute an innovative method, which is fast and reliable using open-source data and software. Multisource remotely sensed data combined with advanced machine learning techniques can potentially be used to estimate AGC in tropical mangrove ecosystems worldwide.

Funder

Badan Penelitian dan Pengabdian Masyarakat

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3