Enhanced Electrical and Thermal Conductivities of Polymer Composites with a Segregated Network of Graphene Nanoplatelets

Author:

Kim Ki Hoon1,Jang Ji-Un2,Yoo Gyun Young3,Kim Seong Hun2ORCID,Oh Myung Jun1,Kim Seong Yun3ORCID

Affiliation:

1. Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea

2. Research Institute of Industrial Science, Hanyang University, 222 Wangsimni-ro, Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea

3. Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea

Abstract

Introducing a segregated network constructed through the selective localization of small amounts of fillers can be a solution to overcome the limitations of the practical use of graphene-based conductive composites due to the high cost of fillers. In this study, polypropylene composites filled with randomly dispersed GNPs and a segregated GNP network were prepared, and their conductive properties were investigated according to the formation of the segregated structure. Due to the GNP clusters induced by the segregated structure, the electrical percolation threshold was 2.9 wt% lower than that of the composite incorporating randomly dispersed GNPs. The fully interconnected GNP cluster network inside the composite contributed to achieving the thermal conductivity of 4.05 W/m∙K at 10 wt% filler content. Therefore, the introduction of a segregated filler network was suitable to simultaneously achieve excellent electrical and thermal conductivities at a low content of GNPs.

Funder

Jeonbuk National University

Korea government

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3