Optimizing the Morphology and Solidification Behavior of Fe-Rich Phases in Eutectic Al-Si-Based Alloys with Different Fe Contents by Adding Mn Elements

Author:

Luo Lei1ORCID,Tang Yingchun2,Liang Xiao1,Su Yanqing3,Zhang Youwei4,Xie Huasheng4

Affiliation:

1. School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Institute Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany

3. National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science & Engineering, Harbin Institute of Technology, Harbin 150001, China

4. China Academy of Machinery Shenyang Research Institute of Foundry Co., Ltd., Shenyang 110022, China

Abstract

A high Fe content easily produces Fe-rich phases with a harmful morphology, resulting in a huge detrimental effect on the properties and recycling ability of Al-Si alloys. Therefore, finding ways to effectively transform Fe-rich phases to form a beneficial phase or shape is of great significance. Accordingly, Al-Si-based alloys with Fe contents ranging from 0.1 wt.% to 2.0 wt.% were modified by different Mn additions. Moreover, experiments combined with simulations were utilized to comprehensively analyze the mechanism of Mn on the morphology and microstructural evolution of Fe-rich phases from different perspectives. The current findings determine that adding different Fe contents changes the phase-transition reactions in alloys. Without Mn, and by increasing the Fe content from 0.1 wt.% to 2.0 wt.%, the Fe-rich phases gradually convert from a skeleton-shaped α-Al8Fe2Si (<0.25 wt.%) to β-Al9Fe2Si2 with a fibrous (0.5 wt.%), needle-like (1.0 wt.%) and plate-like shape without curvatures (2.0 wt.%). The maximum length and mean aspect ratio increase from 12.01 μm to 655.66 μm and from 1.96 to 84.05, while the mean curvature decreases from 8.66 × 10−2 μm−1 to 8.25 × 10−4 μm−1. The addition of 0.35 wt.% Mn promotes a new Chinese-character and petal-shaped α-Al15(FeMn)3Si2, with an atomic ratio of Fe and Mn of 1:1 when the Fe content is lower than 0.5 wt.%, while it transforms to β-Al15(FeMn)3Si2 with an atomic ratio of 5:1, presenting as a refined plate-like shape with a certain curvature, as the Fe content increases to 2.0 wt.%. Mn alters the phase reactions and increases the threshold of the Fe content required for β-Al15(FeMn)3Si2, limiting the formation and growth of them simultaneously in time and space. The enrichment of Mn atoms and solute diffusion at the growth front of β-Al15(FeMn)3Si2, as well as the strong atomic-binding ability, can deflect the growth direction of β-Al15(FeMn)3Si2 for it to have a certain curvature. Additionally, the enriched Mn atoms easily form α-Al15(FeMn)3Si2 and cause the long β-Al15(FeMn)3Si2 to be broken and refined to further reduce the damages caused to the alloy’s performance. Ultimately, the maximum length and mean aspect ratio can be effectively reduced to 46.2% and 42.0%, respectively, while the mean curvature can be noticeably increased by 3.27 times with the addition of Mn.

Funder

National Natural Science Foundation for Young Scientists of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3