Construction of Recombinant Rabies Virus Vectors Expressing H or F Protein of Peste des Petits Ruminants Virus

Author:

Wang Haojie,Bi JinhaoORCID,Feng Na,Zhao Yongkun,Wang Tiecheng,Li Yuetao,Yan Feihu,Yang Songtao,Xia Xianzhu

Abstract

Peste des petits ruminants (PPR) is one of the most contagious and fatal diseases of small ruminants in the world and is classified as a category A epidemic disease. It is the target of a global eradication campaign led by the Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO). The PPR live attenuated vaccine is currently the most widely used and approved vaccine, but the use of this vaccine interferes with the serological testing of the PPR elimination program, and there is a potential safety risk. Viral vector vaccines are one of the most promising methods to solve this dilemma. In this study, the full-length infectious clone plasmid of rabies virus (RABV), pD-SRV9-PM-LASV, was used as the backbone, and the envelope glycoprotein H (hemagglutinin protein) or F (fusion protein) gene of PPRV was inserted into the backbone plasmid to construct the infectious clones pD-SRV9-PM-PPRV-H and pD-SRV9-PM-PPRV-F, which express the PPRV H and PPRV F genes, respectively. The correct construction of these infectious clones was verified after sequencing and double digestion. The infectious clones were transfected with a helper plasmid into BSR/T7 cells, and recombinant viruses were successfully rescued by direct immunofluorescence, indirect immunofluorescence, Western blotting, and transmission electron microscopy and named rSRV9-H and rSRV9-F. The results of growth kinetics studies indicated that the inserted gene did not affect virus proliferation. Stability studies revealed that the inserted target gene was stably expressed in recombinant RABV for at least 15 generations. In this study, the recombinant viruses rSRV9-H and rSRV9-F were successfully rescued. The constructed viruses had good proliferative activity and stability and provided potential bivalent inactivated vaccine candidate strains for the prevention of PPR and livestock rabies.

Funder

the Key Science and Technology Program of Henan Province

Publisher

MDPI AG

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3