A Simulation Study of Carrier Capture Ability of the Last InGaN Quantum Well with Different Indium Content for Yellow-Light-Emitting InGaN/GaN Multiple Quantum Wells

Author:

Liu Wei1,Liu Zeyu1,Zhao Hengyan1,Gao Junjie1

Affiliation:

1. School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Currently, GaN-based blue- and green-light-emitting devices have achieved successful applications in practice, while the luminescence efficiency of devices with longer wavelengths (such as yellow light) is still very low. Therefore, in this paper, the electroluminescence characterization of yellow-light-emitting InGaN/GaN multiple quantum wells (MQWs) with different In content in the last InGaN quantum well, which is next to the p-type GaN electrode layer, are investigated numerically to reveal a possible physical mechanism by which the different distribution of In content in the active region impacts the carrier capture and the light emission process in yellow InGaN/GaN MQWs. The simulation results show that at low injection currents, the luminescence efficiency of high-In-content yellow MQWs is enhanced, which can be ascribed to the enhanced radiative recombination process induced by the increased carrier concentration in the last InGaN quantum wells with promoted carrier capture ability. However, in the case of high injection condition, the luminescence efficiency of yellow MQWs deteriorates with increasing In content, i.e., the droop effect becomes remarkable. This can be ascribed to both significantly enhanced Auger recombination and electron leakage in the last InGaN quantum well, induced also by the promoted capture ability of charge carriers.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3