Seeding Density Alters the Assembly of a Restored Plant Community after the Removal of a Dam in Southern Wisconsin, USA

Author:

Wells Ana J.1ORCID,Harrington John2,Balster Nick J.2

Affiliation:

1. State Cartographer’s Office, University of Wisconsin Madison, Madison, WI 53706, USA

2. Department of Soil Science, University of Wisconsin Madison, 1525 Observatory Drive, Madison, WI 53706, USA

Abstract

Recently exposed reservoir sediments, prone to colonization by invasive species, provide novel settings to test hypotheses related to soil conditions and propagule supply as potential drivers of plant assembly in disturbed ecosystems. We used a dam removal site in southwestern Wisconsin to examine the relationship between the physiochemical properties of dewatered sediments, seeding density, and plant community assembly. The plant communities from five seed densities (1000, 500, 250, 125, and 0 seed m−2) were annually assessed over four years. We hypothesized (1) that the native aboveground biomass and the proportion of native to invasive (non-seeded species) aboveground biomass would increase with the seeding density and (2) that the diversity of seeded native species would increase with a higher seeding density. We found evidence that sowing at least 500 seeds m−2 of prairie species increased their abundance, establishment, and plot diversity compared to non-seeded plants that persisted four years after seeding (p < 0.05). The seeding density treatments led to the assembly of two distinct communities: “native” and “invasive”. The “native” community, assembled in plots seeded with at least 500 seeds m−2, had a greater aboveground biomass and diversity (i.e., richness) of seeded plants compared to plots with lower seed densities, and its productivity was positively related to this richness. In the “weedy” community, the diversity of invasive species had no relationship to their aboveground biomass, likely because these species share similar traits (i.e., redundancy) and may have performed similar functions within the plant community. These findings suggest that the seeding density interacted with the disturbed soil resources to increase the diversity and productivity of seeded native species and may serve as a positive feedback mechanism for the establishment of native communities in dewatered sediments.

Funder

Franbrook Farm Foundation

University of Wisconsin–Madison College of Agriculture and Life Sciences

the Non-Point Source Pollution Project of the State of Wisconsin for Environmental Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3