Chronic Heat Exposure Modulates Innate and Adaptive Immune Responses in Firefighters

Author:

Yadav Brijesh1ORCID,Mohammed Afzaal Nadeem1,Graham Brittney1,Bhattacharya Amit2,Yadav Jagjit Singh1ORCID

Affiliation:

1. Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA

2. Division of Environmental and Industrial Hygiene, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA

Abstract

Global fire activities, which are getting worse due to climate change, cause both environmental and human health hazards. Firefighters, being the first responders, are frequently exposed to heat which may impact their immune system and overall health. However, the nature of the impact of chronic heat exposure on immune function has not been studied in-depth in firefighters. In this study, 22 firefighters exposed to “heavy-smoke fires (structural fires)”, categorized as the “high-exposure group” (>0.15 structural fires/week) and “low-exposure group” (<0.15 structural fires/week), were sampled. Peripheral blood was examined for immune cell profile based on total and differential cell counts, immune function based on the transcriptional expression of drivers of innate and adaptive immunity and key inflammation mediators, and heat stress marker HSP70. The white blood cell (WBC) count, mean corpuscular volume, mean corpuscular hemoglobin, and absolute and segmented neutrophil counts decreased below the normal range in both exposure groups. The gene transcript levels for toll-like receptors (TLR2, TLR4, but not TLR7) and their adaptor protein MYD88 were lower whereas those for T-cell transcription factors (RORC/RORγ, FoxP3) and inflammatory mediators (TNF-α, Granzyme-B) were higher in the “high-exposure group”, indicating mixed response; however, the ratios between pro-inflammatory and anti-inflammatory transcription factors of adaptive immunity, namely T-bet/FoxP3 (Th1/Treg) and RORC/FoxP3 (Th17/Treg), were lower. Collectively, decreased immune cell landscape, downregulated key innate immunity receptors, and Tregs’ dominance suggested that chronic heat exposure in firefighters dysregulated innate and adaptive immunity, skewed towards an overall immunosuppressive condition with inflammation.

Funder

National Institute for Occupational Safety and Health

Pilot Research Project Training Program of the University of Cincinnati’s Education and Research Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3