Legacy Phosphorus in Sediments of Lowland Waterways

Author:

Koch Stefan1ORCID,Rosewig Ellen Iva2,Lennartz Bernd1ORCID

Affiliation:

1. Agrar- und Umweltwissenschaftliche Fakultät, Universität Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany

2. Interdisziplinäre Fakultät, Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany

Abstract

Riverbed sediments in agricultural landscapes are loaded with phosphorus (P). They may act as a source or sink for riverine P, possibly causing harmful algae blooms and eutrophication in streams and receiving water bodies, including coastal waters. In this study, we aimed at identifying the labile, moderately labile, and stable P fraction (Hedley fractionation) in sediments of a northeastern German river basin (3000 km2). A non-metrical multidimensional scaling (NMDS) was used to identify the most significant environmental predictors of the P fractionation in sediments. The total P contents of the sediments varied over a wide range (698 ± 701 mg P kg−1 sediment−1), spanning from 98 to 2648 mg P kg−1 sediment−1. Adjacent agricultural reference soils had markedly lower total P contents of 354 ± 132 mg P kg−1 soil−1, ranging from 146 to 483 P kg−1 soil−1. There were almost no differences between the P contents of the top (0–2 cm) and the bottom (2–10 cm) layer. The dominant P fractions were the moderately labile (NaOH-P) and the stable (H2SO4-P) fractions, which accounted for more than 50% of the total P at each sampling point. The NMDS revealed that iron and aluminum contents, as well as land use, are significant predictors for the P fractionation of the sediment. The sediment P-composition reflects the P-status of the agriculturally used mineral soils. However, the size of the contributing catchment as well as the length of the water way have no effects on sediment P. In conclusion, sediment P stocks, though variable, may impede the good ecological status of river waters for decades, especially in lowland basins where hydraulic conditions and a very low stream velocity often create low redox and P dissolution conditions in sediments.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Put the Land Back on the Land: A National Imperative;Sediment Transport Research - Further Recent Advances;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3