Machining Chatter Prediction Using a Data Learning Model

Author:

Cherukuri Harish,Perez-Bernabeu ElenaORCID,Selles MiguelORCID,Schmitz Tony

Abstract

Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and reduced cost in these processes is chatter, or unstable spindle speed-chip width combinations that exhibit a self-excited vibration. In this paper, an artificial neural network (ANN)—a data learning model—is applied to model turning stability. The novel approach is to use a physics-based process model—the analytical stability limit—to generate a (synthetic) data set that trains the ANN. This enables the process physics to be combined with data learning in a hybrid approach. As anticipated, it is observed that the number and distribution of training points influences the ability of the ANN model to capture the smaller, more closely spaced lobes that occur at lower spindle speeds. Overall, the ANN is successful (>90% accuracy) at predicting the stability behavior after appropriate training.

Funder

University of North Carolina Research Opportunities Initiative

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3