scAAV2-Mediated Expression of Thioredoxin 2 and C3 Transferase Prevents Retinal Ganglion Cell Death and Lowers Intraocular Pressure in a Mouse Model of Glaucoma

Author:

Kim Hee Jong12,Cha Seho12,Choi Jun-Sub12,Lee Joo Yong34ORCID,Kim Ko Eun34ORCID,Kim Jin Kwon12,Kim Jin12ORCID,Moon Seo Yun12,Lee Steven Hyun Seung12,Park Keerang12,Won So-Yoon12ORCID

Affiliation:

1. Institute of New Drug Development Research, Cdmogen Co., Ltd., Seoul 05855, Republic of Korea

2. Cdmogen Co., Ltd., Cheongju 28577, Republic of Korea

3. Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea

4. Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea

Abstract

Elevated intraocular pressure (IOP) in glaucoma causes retinal ganglion cell (RGC) loss and damage to the optic nerve. Although IOP is controlled pharmacologically, no treatment is available to restore retinal and optic nerve function. In this paper, we aimed to develop a novel gene therapy for glaucoma using an AAV2-based thioredoxin 2 (Trx2)-exoenzyme C3 transferase (C3) fusion protein expression vector (scAAV2-Trx2-C3). We evaluated the therapeutic effects of this vector in vitro and in vivo using dexamethasone (DEX)-induced glaucoma models. We found that scAAV2-Trx2-C3-treated HeLa cells had significantly reduced GTP-bound active RhoA and increased phosphor-cofilin Ser3 protein expression levels. scAAV2-Trx2-C3 was also shown to inhibit oxidative stress, fibronectin expression, and alpha-SMA expression in DEX-treated HeLa cells. NeuN immunostaining and TUNEL assay in mouse retinal tissues was performed to evaluate its neuroprotective effect upon RGCs, whereas changes in mouse IOP were monitored via rebound tonometer. The present study showed that scAAV2-Trx2-C3 can protect RGCs from degeneration and reduce IOP in a DEX-induced mouse model of glaucoma, while immunohistochemistry revealed that the expression of fibronectin and alpha-SMA was decreased after the transduction of scAAV2-Trx2-C3 in murine eye tissues. Our results suggest that AAV2-Trx2-C3 modulates the outflow resistance of the trabecular meshwork, protects retinal and other ocular tissues from oxidative damage, and may lead to the development of a gene therapeutic for glaucoma.

Funder

Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3