Detection of Abnormal Vibration Dampers on Transmission Lines in UAV Remote Sensing Images with PMA-YOLO

Author:

Bao Wenxia,Ren YangxunORCID,Wang Nian,Hu Gensheng,Yang Xianjun

Abstract

The accurate detection and timely replacement of abnormal vibration dampers on transmission lines are critical for the safe and stable operation of power systems. Recently, unmanned aerial vehicles (UAVs) have become widely used to inspect transmission lines. In this paper, we constructed a data set of abnormal vibration dampers (DAVDs) on transmission lines in images obtained by UAVs. There are four types of vibration dampers in this data set, and each vibration damper may be rusty, defective, or normal. The challenges in the detection of abnormal vibration dampers on transmission lines in the images captured by UAVs were as following: the images had a high resolution as well as the objects of vibration dampers were relatively small and sparsely distributed, and the backgrounds of cross stage partial networks of the images were complex due to the fact that the transmission lines were erected in a variety of outdoor environments. Existing methods of ground-based object detection significantly reduced the accuracy when dealing with complex backgrounds and small objects of abnormal vibration dampers detection. To address these issues, we proposed an end-to-end parallel mixed attention You Only Look Once (PMA-YOLO) network to improve the detection performance for abnormal vibration dampers. The parallel mixed attention (PMA) module was introduced and integrated into the YOLOv4 network. This module combines a channel attention block and a spatial attention block, and the convolution results of the input feature maps in parallel, allowing the network to pay more attention to critical regions of abnormal vibration dampers in complex background images. Meanwhile, in view of the problem that abnormal vibration dampers are prone to missing detections, we analyzed the scale and ratio of the ground truth boxes and used the K-means algorithm to re-cluster new anchors for abnormal vibration dampers in images. In addition, we introduced a multi-stage transfer learning strategy to improve the efficiency of the original training method and prevent overfitting by the network. The experimental results showed that the mAP@0.5 for PMA-YOLO in the detection of abnormal vibration dampers reached 93.8% on the test set of DAVD, 3.5% higher than that of YOLOv4. When the multi-stage transfer learning strategy was used, the mAP@0.5 was improved by a further 0.2%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3